Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(8): 4114-4124, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38353098

ABSTRACT

Nucleic acid-based drugs are changing the scope of emerging medicine in preventing and treating diseases. Nanoparticle systems based on lipids and polymers developed to navigate tissue-level and cellular-level barriers are now emerging as vector systems that can be translated to clinical settings. A class of polymers, poly(ß-amino esters) (PBAEs) known for their chemical flexibility and biodegradability, has been explored for gene delivery. These polymers are sensitive to changes in the monomer composition affecting transfection efficiency. Hence to add functionality to these polymers, we partially substituted ligands to an identified effective polymer chemistry. We report here a new series of statistical copolymers based on PBAEs where the backbone is modified with sugar alcohols to selectively facilitate the caveolae-mediated endocytosis pathway of cellular transport. These ligands are grafted at the polymer's backbone, thereby establishing a new strategy of modification in PBAEs. We demonstrate that these polymers form nanoparticles with DNA, show effective complexation and cargo release, enter the cell via selective caveolae-mediated endocytosis, exhibit low cytotoxicity, and increase transfection in neuronal cells.


Subject(s)
Nanoparticles , Polyesters , Polyesters/pharmacology , Caveolae , Transfection , Polymers/chemistry , Endocytosis , Nanoparticles/chemistry
2.
Biomacromolecules ; 25(2): 853-863, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38214450

ABSTRACT

Injectable hydrogels with nonlinear mechanical attributes to emulate natural biopolymers hold paramount significance in tissue engineering, offering the potential to create scaffolds that seamlessly mimic the biomechanical intricacies of living tissues. Herein, we unveil a synthetic design strategy employing Schiff base chemistry to furnish a peptide-polymer hierarchical contractile injectable hydrogel network. This innovative design demonstrates cross-linking of supramolecular peptide nanostructures such as nanofibers, 1NF, and twisted bundles, 1TB, with a thermosensitive aldehyde-functionalized polymer, PCHO. These networks exhibit interesting nonlinear mechanical stiffening responses to temperature and external stress. Furthermore, the hydrogels transform into a gel state at physiological temperature to exhibit injectable behavior and demonstrate compression load-bearing capabilities. Finally, the hydrogel network exhibits excellent biocompatibility and cell proliferation toward fibroblast, L929, and myoblast, C2C12, to validate their use as potential extracellular matrix mimetic injectable scaffolds.


Subject(s)
Hot Temperature , Hydrogels , Hydrogels/pharmacology , Hydrogels/chemistry , Tissue Engineering , Polymers , Biopolymers , Cell Proliferation , Peptides , Muscles
3.
Chem Commun (Camb) ; 59(88): 13195-13198, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37850559

ABSTRACT

We design amphiphilic di-block copolymers (P-b-F and P-b-C) tethered with stimuli-responsive ferrocene and coumarin hydrophobic pendants that exhibit chain collapse behaviour in response to light, redox and chemical cues, with subsequent transformation of the vesicles into micelles. Interestingly, the co-assembled vesicles of the polymer blend under orthogonal stimuli furnish self-sorted micelles and vesicles.

4.
Angew Chem Int Ed Engl ; 62(37): e202306751, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37483166

ABSTRACT

Designing polymeric systems with ultra-high optical activity is instrumental in the pursuit of smart artificial chiroptical materials, including the fundamental understanding of structure/property relations. Herein, we report a diacetylene (DA) moiety flanked by chiral D- and L-FF dipeptide methyl esters that exhibits efficient topochemical photopolymerization in the solid phase to furnish polydiacetylene (PDA) with desired control over the chiroptical properties. The doping of the achiral gold nanoparticles provides plasmonic interaction with the PDAs to render asymmetric shape to the circular dichroism bands. With the judicious design of the chiral amino acid ligand appended to the AuNPs, we demonstrate the first example of selective chiral amplification mediated by stereo-structural matching of the polymer-plasmonic AuNP hybrid pairs. Such ordered self-assembly aided by topochemical polymerization in peptide-tethered PDA provides a smart strategy to produce soft responsive materials for applications in chiral photonics.

5.
ACS Appl Mater Interfaces ; 15(21): 25110-25121, 2023 May 31.
Article in English | MEDLINE | ID: mdl-35767722

ABSTRACT

Supramolecular assemblies with well-defined structural attenuation toward varied functional implications are an emerging area in mimicking natural biomaterials. In that regard, the redox stimuli-responsive ferrocene moiety can reversibly change between a nonpolar ferrocenyl and polar ferrocenium cation that endows interesting modular features to the building blocks with respect to self-assembly/disassembly. We design a series of ferrocene anchored peptide fragment NVFFAKKC using hydrophobic alkyl spacers of different chain lengths. Increasing the spacer length between the redox-responsive and self-assembling motifs increases the propensity to form robust nanofibers, which can be physically cross-linked to form hydrogels. The controlled redox response of the ferrocene moiety tandem with pH control provides access to structural control over the peptide nanostructures and tunable mechanical strengths. Further, such redox-sequestered dormant states hinder the spontaneous nucleation process that we exploit toward seeded supramolecular polymerization to form block cofibers composed of redox-responsive periphery and nonresponsive cores. Finally, such redox sequestration of peptide self-assembly renders an on-off piezoelectric response for potential utilization in peptide bioelectronics.


Subject(s)
Nanofibers , Nanostructures , Metallocenes , Peptides/chemistry , Nanostructures/chemistry , Nanofibers/chemistry
6.
Nanoscale ; 14(40): 15079-15090, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36200975

ABSTRACT

Stimuli-responsive self-assembled and supramolecular hydrogels derived from peptide amphiphiles have opened exciting new avenues in biomedicine and drug delivery. Herein, we screened a series of phenylalanine-amphiphiles possessing polyamine and oxyethylene appendages for their self-assembly and anion-responsiveness and found that the tris(aminoethyl)amine (TREN) containing amphiphile NapF-TREN formed injectable hydrogels that could be disrupted upon the addition of stoichiometric amounts of tetrahedral monovalent anions such as H2PO4- and HSO4-, while the addition of other anions such as Cl-, HPO42-, CO32-, HCO3- or SO42- did not affect the gel stability. The anion-gelator interaction was investigated by 1H and 31P NMR spectroscopy as well as by Isothermal Titration Calorimetry (ITC). These studies confirmed a 1 : 1 stoichiometry and revealed negative enthalpy and negative entropy for the binding of H2PO4- with NapF-TREN. Microscopic investigations by TEM, AFM, and SAXS revealed that H2PO4- anions induced a nanofiber-to-nanoglobule morphological change in the aqueous self-assemblies of NapF-TREN. However, upon ageing the samples, slow reformation of the nanofibers was also observed, reflecting the reversibility of the anion-gelator interaction. The anion- and pH-responsive nature of the NapF-TREN hydrogels was exploited to program sequential release of entrapped drugs propranolol and doxorubicin.


Subject(s)
Hydrogels , Phenylalanine , Hydrogels/chemistry , Propranolol , Scattering, Small Angle , X-Ray Diffraction , Anions/chemistry , Doxorubicin/pharmacology , Peptides , Polyamines
7.
Soft Matter ; 18(30): 5605-5614, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35861047

ABSTRACT

Self-powered supramolecular micropumps could potentially provide a solution for powerless microfluidic devices where the fluid flow can be manipulated via modulating non-covalent interactions. An attempt has been made to fabricate thin-film-based micropumps by depositing a ß-cyclodextrin ('host') functionalized polymer on a glass slide via layer-by-layer assembly. These supramolecular micropumps turned on the fluid flow upon addition of 'guest' molecules to the multilayer films. The flow velocity was tuned using the concentration of the guest molecules as well as the number of host layers inside the multilayer films. Numerical modelling reveals that the solutal buoyancy, which originates from host-guest complexation, is primarily responsible for the fluid flow. In view of its potential application in self-powered devices, the thin-film-based micropump was integrated into a microfluidic device to show molecular and colloidal transport over long distances.

8.
Mol Pharm ; 19(5): 1309-1324, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35333535

ABSTRACT

Nucleic acids, both DNA and small RNAs, have emerged as potential therapeutics for the treatment of various lung disorders. However, delivery of nucleic acids to the lungs is challenging due to the barrier property imposed by mucus, which is further reinforced in disease conditions such as chronic obstructive pulmonary disease and asthma. The presence of negatively charged mucins imparts the electrostatic barrier property, and the mesh network structure of mucus provides steric hindrance to the delivery system. To overcome this, the delivery system either needs to be muco-inert with a low positive charge such that the interactions with mucus are minimized or should have the ability to transiently dismantle the mucus structure for effective penetration. We have developed a mucus penetrating system for the delivery of both small RNA and plasmid DNA independently. The nucleic acid core consists of a nucleic acid (pDNA/siRNA) and a cationic/amphipathic cell penetrating peptide. The mucus penetrating coating consists of the hydrophilic biopolymer chondroitin sulfate A (CS-A) conjugated with a mucolytic agent, mannitol. We hypothesize that the hydrophilic coating of CS-A would reduce the surface charge and decrease the interaction with negatively charged mucins, while the conjugated mannitol residues would disrupt the mucin-mucin interaction or decrease the viscosity of mucus by increasing the influx of water into the mucus. Our results indicate that CS-A-mannitol-coated nanocomplexes possess reduced surface charge, reduced viscosity of artificial mucus, and increased diffusion in mucin suspension as well as increased penetration through the artificial mucus layer as compared to the non-coated ones. Further, the coated nanocomplexes showed low cytotoxicity as well as higher transfection in A-549 and BEAS-2B cells as compared to the non-coated ones.


Subject(s)
Cell-Penetrating Peptides , Nanoparticles , Nucleic Acids , Cell-Penetrating Peptides/metabolism , Drug Carriers/chemistry , Lung/metabolism , Mannitol/metabolism , Mucins/metabolism , Mucus/metabolism , Nanoparticles/chemistry , Nucleic Acids/metabolism
9.
Nanoscale ; 13(31): 13401-13409, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34477745

ABSTRACT

Enzymes are the most efficient catalysts in nature that possess an impressive range of catalytic activities, albeit limited by stability in adverse conditions. Functional peptides have emerged as alternative robust biocatalysts to mimic complex enzymes. Here, a rational design of minimalistic amyloid-inspired peptides 1-2 is demonstrated, which leads to pathway-driven self-assembly triggered by heat, light and chemical cues to render 1D and 2D nanostructures by the interplay of hydrogen bonding, host-guest interaction and reversible photodimerization. Such in situ transformable peptide nanostructures by means of external cues are envisaged as a catalytic amyloid for the first time to mimic the hydrolase enzyme activity. Michaelis Menten's enzyme kinetic parameters for the hydrolysis rate correlate the external cue-mediated structure-function augmentation with the twisted bundles, 1TB being the most efficient biocatalyst among all the dimensionally diverse nanostructures. Unlike the natural enzyme, the peptide nanostructures exhibited the robust nature of the hydrolase activity over a broad range of temperature and pH. Finally, the peptide nanostructures are explored as efficient heterogeneous flow catalysts to improve the turnover number for the hydrolase activity.


Subject(s)
Hydrolases , Nanostructures , Catalysis , Hydrogen Bonding , Peptides
10.
RSC Adv ; 11(62): 39376-39386, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492467

ABSTRACT

Efficacy and durability of the photovoltaic device mandates its protection against hot, humid weather condition, high energy of UV light and unwanted scratches. Such challenges can be mitigated by smart polymeric coating with inherent properties e.g. hydrophobicity to prevent moisture, optimal viscocity for better processibility and crack-healing. The hydrophobic polymers TP1-TP4 containing pendant photo-crosslinkable thymine moieties are designed that undergo [2 + 2] photocycloaddition upon UVB irradiation and can be dynamically reverted back upon irradiation with UVC light. A judicious control of solvent environment, chain length, functionality% and concentration of the polymers regulate the aspects of photodimerization thereby, rendering intra or inter-chain collapse to form diverse nanostructures. Photodimerization of the thymine moieties renders coil to globule transformation in dilute condition whereas irradiation performed at high macromolecular concentration regime exhibits higher order nanostructures. The photoresponsive chain collapse leads to the formation of rigid crosslinked domains within flexible polymer chains akin to the hard-soft phases of thermoplastic elastomers. Such rigidification of the crosslinked segments endows a tool to photomodulate the glass transition temperature (T g) that can dynamically revert back upon decrosslinking. Further, the structural modulation of the polymers is explored towards autonomic and nonautonomic self-healing behaviour at ambient conditions. Moreover, the self-healing efficacy can be tuned with the film thickness and it remains unaltered upon using solar simulator or direct sunlight. Overall, such hydrophobic low T g polymers display photo-regulated self-healing mechanism consisting of both autonomic and non-autonomic self-healing and may find applications in designing smart protective coatings for photovoltaic devices.

11.
Nanoscale ; 12(36): 18692-18700, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32970093

ABSTRACT

Self-sorting is a spontaneous phenomenon that ensures the formation of complex yet ordered multicomponent systems and conceptualizes the design of artificial and orthogonally functional compartments. In the present study, we envisage chirality-mediated self-sorting in ß-amyloid-inspired minimalistic peptide amphiphile (C10-l/d-VFFAKK)-based nanofibers. The fidelity and stereoselectivity of chiral self-sorting was ascertained by Förster resonance energy transfer (FRET) by the judicious choice of a pyrene (Py)-hydroxy coumarin (HOCou) donor-acceptor pair tethered to the peptide sequences. Seed-promoted elongation of the homochiral peptide amphiphiles investigated by AFM image analyses and Thioflavin-T (ThT) binding study further validated the chiral recognition of the l/d peptide nanofibers. Moreover, direct visualization of the chirality-driven self-sorted nanofibers is reported using super-resolution microscopy that exhibits enantioselective enzymatic degradation for l-peptide fibers. Such enantioselective weakening of the hydrogels may be used for designing stimuli-responsive orthogonal compartments for delivery applications.


Subject(s)
Nanofibers , Peptides , Amino Acid Sequence , Amyloid , Hydrogels
12.
Soft Matter ; 16(10): 2506-2515, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32090231

ABSTRACT

Synthetic systems mimicking the natural self-folding process are attractive to impart multiple structural control over polymer crosslinking and the subsequent alteration of their macroscopic self-healing properties. In that regard, polymers P1-P5 containing pendant photo-crosslinkable moieties were designed and underwent intra- or interchain collapse to form diverse nanostructures. The shape and dimension of the nanostructures could be efficiently controlled by the concentration, solvent compatibility and characteristics of the polymers. Photodimerization of the coumarin moieties transformed the extended coiled chain of the polymer to uniform sized nanoparticles in a dilute condition, while in the crowded macromolecular concentration regime, the polymer folded into nanostructures with polydisperse topologies that were far from a condensed globule or partially swollen globule conformation. Scaling law exponents for polymer chain compaction suggested an interchain collapse with rigid compact segments connected by flexible polymer chains that draws an analogy with elastomers. Such a hardening of the rigid segment as a consequence of photodimerization rendered a significant increase in the glass transition temperature (Tg), which could be reversibly controlled upon decrosslinking. Lastly, the structural variation of this class of polymers over self-healing was explored and the crosslinked polymers showed phototriggered non-autonomic and intrinsic self-healing behaviour under ambient conditions. This is an interesting approach to access a photomodulated self-healing system with low Tg polymers that shows the coexistence of autonomic and nonautonomic self-healing pathways and that may find application in designing smart coatings for photovoltaic devices.

13.
ACS Appl Mater Interfaces ; 11(31): 28213-28220, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31305990

ABSTRACT

Peptide 1 with an Aß42 amyloid nucleating core and a photodimerizable 4-methylcoumarin moiety at its N terminus demonstrates the step-wise self-assembly in water to form nanoparticles, with eventual transformation into 1D nanofibers. Addition of γ-cyclodextrin to 1 with subsequent irradiation with UV light at 320 nm resulted in morphological conversion to free-standing 2D nanosheets mediated by the host-guest interaction. Mechanical agitation of the 1D and 2D nanostructures led to seeds with narrow polydispersity indices, which by mediation of seeded supramolecular polymerization found seamless control over the dimensions of the nanostructures. Such structural and temporal control to differentiate the pathway was exploited to tune the mechanical strength of hierarchical hydrogel materials. Finally, the dimensional characteristics of the positively charged peptide fibers and sheets were envisaged as excellent exfoliating agents for inorganic hybrid materials, for example, MoS2.

SELECTION OF CITATIONS
SEARCH DETAIL
...